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ABSTRACT
Sleep quality plays a significant role in personal health.
A great deal of effort has been paid to design sleep
quality monitoring systems, providing services ranging from
bedtime monitoring to sleep activity detection. However, as
sleep quality is closely related to the distribution of sleep
duration over different sleep stages, neither the bedtime
nor the intensity of sleep activities is able to reflect sleep
quality precisely. To this end, we present Sleep Hunter, a
mobile service that provides a fine-grained detection of sleep
stage transition for sleep quality monitoring and intelligent
wake-up call. The rationale is that each sleep stage is
accompanied by specific yet distinguishable body movements
and acoustic signals. Leveraging the built-in sensors on
smartphones, Sleep Hunter integrates these physical activities
with sleep environment, inherent temporal relation and
personal factors by a statistical model for a fine-grained sleep
stage detection. Based on the duration of each sleep stage,
Sleep Hunter further provides sleep quality report and smart
call service for users. Experimental results from over 30 sets
of nocturnal sleep data show that our system is superior to
existing actigraphy-based sleep quality monitoring systems,
and achieves satisfying detection accuracy compared with
dedicated polysomnography-based devices.
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INTRODUCTION
Sleep, occupying nearly one-third of human lifetime, is
a necessary and vital biological function. Physiological
communities often regard sleep as a cyclical process
composed of three stages: rapid eye movement (REM)
stage, light sleep stage and deep sleep stage [23]. The
biological characteristics of different sleep stages exhibit
distinguishingly. REM is an active period of sleep marked
by intense brain activities and dream occurrence. Light sleep
stage is a period of relaxation, when the heartbeat, breathing
rate and muscle activity slow down. Deep sleep stage triggers
hormones to promote body growth, as well as the repair and
restoration of energy. Sleep quality is actually determined by
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the distribution of different sleep stages rather than the time of
sleep [7]. Even though people experience a full night’s sleep,
they may still feel fatigued after being woken up. A longer
deep sleep period contributes to a better sleep. Moreover, a
proper wake-up time is also helpful for mental and physical
health [38]. Comparing with other sleep stages, people woken
up in light sleep stage feel more refreshed generally.

Sleep quality monitoring requires a careful observation of
individuals’ sleep stages. The approaches to recording sleep
stages are divided into two categories. The first category
is based on polysomnography [32]. The methods in this
category leverage electroencephalograph (EEG) to observe
brain waves and then recognize sleep stages accurately. EEG
systems, e.g., Zeo [41], however, are usually limited to
medical and physiological studies. High cost and complicated
operations make them hard to be accepted by the public. The
approaches in the second category are based on actigraphy [1]
utilizing some certain physical activities such as body
movement or snore to predict sleep stage. The detection
performance based on these approaches, e.g., Jawbone up
[16] and Sleep As Android [37], has not yet been evaluated
against medically accepted methods. In this paper, we show
their performance to be substantially lesser than the methods
used in physiological studies.

In this paper, we present Sleep Hunter, a sleep stage
detection system based on actigraphy that predicts sleep
stage transitions by smartphone. The information collected
by Sleep Hunter can be used to evaluate human sleep
quality and provide smart call service, which wakes up
users in light sleep stage intelligently. The principle
behind our system is that apart from implicit brain wave
changes, individuals usually exhibit distinguishable physical
activities during different sleep stages. For example, in
REM, breathing rate is commonly unstable and people
tend to exhibit large body movements. Whereas in the
deep sleep stage, breathing rate becomes slower and more
regular, accompanied with slight body movements such
as arm trembling and leg jerking [39]. Moreover, sleep
environment, sleep duration and some certain personal
factors also impact the transition of sleep stages. Sleep
Hunter leverages built-in sensors of the smartphone to detect
such sleep-related events and then predicts the transition
of sleep stages overnight. Based on the detected sleep
stages, it generates a corresponding score for sleep quality
evaluation and provides smart call service. Compared with
the methods in the first category, Sleep Hunter is a service
that runs on a commercial off-the-shelf smartphone which
requires no additional device. The simple operation makes
it more convenient than polysomnography-based systems.
Furthermore, Sleep Hunter integrates sleep-related events
comprehensively and leverages a statistical model to predict
sleep stage. The fine-grained detection results and promising
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Activity Explanation
Tachypneic breath A condition of rapid breathing, commonly between 12-20 breaths per minute.
Apneustic breath A series of slow, deep breathing, lasting about 6-10 seconds, after which the air is suddenly expelled by the elastic recoil of

the lung.
Cough A sudden and often repetitively occurring reflex which helps to clear the large breathing passages from secretions, irritants.
Snore A vibration of respiratory structures and a resulting sound, due to obstructed air movement during breathing while sleeping.
Somniloquy A parasomnia that refers to talking aloud while asleep. It can be quite loud, ranging from simple sounds to long speeches,

and can occur many times during sleep.
Macro body movement A serials of significant activities happened in sleep cycles, such as turning body over, driving or raising legs and so on.
Micro body movement A serials of tiny activities appeared in sleep cycles, including short convulsion and hand trembling, head moving.

Table 1. The physical activities happened in sleep process

performance make Sleep Hunter more suitable than those
actigraphy-based products in the second category.

We face two challenges when codifying such idea into a
practical system. The first challenge is how to identify
discriminative activities from a variety of primitive data,
given the condition that sensory data are sparse and full
of noise. For example, audio signals recorded by the
microphone contain not only sleep-related primitives, but also
ambient noise. The second challenge is how to leverage
sleep-related events to figure out features for capturing
sleep stage transitions. Many events such as snore, body
movement, sleep duration and even people’s age have close
relationships with sleep. The influence of these factors should
be reasonably utilized.

To address the above challenges, we design a unique
feature-extraction mechanism for each of sleep-related events
based on their physical characteristics. Moreover, we exploit
conditional random field (CRF), a statistical model to parse
the relations behind these events according to our over 90
sets of nocturnal sleep data, and evaluate them on our testing
dataset.

The contributions of our paper are listed as follows. 1) We put
forward a set of efficient algorithms to detect sleep-related
events and adopt a CRF to depict the relationship between
such events and sleep stages. 2) We implement Sleep Hunter
on Android platform and conduct evaluation experiments on
15 participants from various age groups. The result of the
testing data over one month demonstrates that the detection
accuracy of Sleep Hunter attains 64.55%, which is superior
to the existing actigraphy-based applications to our best
knowledge. 3) We conduct extensive case studies and show
that Sleep Hunter is able to provide sleep quality reports and
smart call services for users.

SYSTEM OVERVIEW
In this section, we present the key insight in our sleep stage
detection scheme first. Then, we specify the design targets of
our system. Finally, we describe the system architecture of
Sleep Hunter.

Key Insight
Our key insight here is related to the following aspects.
Firstly, apart from the implicit physiological activities (e.g.,

Light Deep REM

Figure 1. An illustration of sleep stage transition

body temperature changes and brain activity variations),
sleepers usually exhibit distinguishable physical activities
in different sleep stages [2]. For example, short breaths
and large body movements such as body rollovers usually
happen in light sleep, resulting from the fast heartbeat. On
the contrary, slight body movements such as arm trembling
and leg jerking [18] mostly occur in deep sleep due to the
slow and regular breathing rate. Moreover, somniloquy
and body trembles caused by frequent dreams generally
appear in REM. Such physical activities can be detected via
off-the-shelf smartphones, serving as the basis for the sleep
stage analysis. Table 1 summarizes the physical activities that
Sleep Hunter mainly monitors during the sleep process.

Secondly, sleep usually follows a predictable pattern, moving
cyclically among light sleep stage, deep sleep stage and REM.
Each sleep cycle typically lasts for about 90 minutes and
repeats four to six times over a night. In each sleep cycle,
sleepers firstly experience a transition from light sleep to deep
sleep and then enter REM. This sequence is shown by solid
black lines in Fig. 1. Nevertheless, sleep cycle is not an
absolute case. The phenomenon of skipping some certain
sleep stages usually occurs during sleep. For example, as
shown by the grey dashed lines in Fig. 1, sleep stage could
jump to REM from light sleep or return to deep sleep from
REM directly. The dependence between two successive sleep
stages, however, still exists. This inherent temporal sequence,
intuitively, could also be utilized for analyzing sleep stages.
Moreover, sleep environment, e.g., ambient illumination, and
certain personal factors, e.g., age, also impact the sleep phases
[18], which help us to predict the transition of sleep stages.
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Design Target
The design target of Sleep Hunter is twofold. 1) Sleep Hunter
needs to detect the sleep stages of users within an allowed
latency for the requirement of the smart call service, as well as
for the fine-grained sleep stage record. This record can further
help to analyze the sleep quality of users, which reflects their
mental and physical health conditions. 2) As a long-term
running mobile application, the CPU share of Sleep Hunter
should be small enough to support the service for the whole
sleep process. This is a basic requirement and is widely
accepted by mobile applications [14, 37, 40].

System Architecture
Sleep Hunter is a two-layer system and provides an interface
for its applications as shown in Fig. 2. The first layer is
composed of five submodules: body movement detection
module, acoustic event detection module, illumination
condition detection module, sleep duration tracking module
and personal factor collection module. Each module is
responsible for collecting its related primitive data and
extracting associated features. The second layer leverages
CRF to integrate features from the upper layer. Based
on these collected features, this layer makes sleep stage
prediction for the corresponding period, which is called
detection phase. The duration of detection phase is set to
be 5 minutes. In other words, Sleep Hunter detects sleep
stage every 5 minutes during sleep. Moreover, Sleep Hunter
provides sleep quality report and smart call service for users
in the interface layer based on the monitoring results of sleep
stages.

SYSTEM DESIGN
In this section, we specify the design and implementation
details for each component in Sleep Hunter.

Body Movement Detection (BM)
Sleepers usually exhibit various physical activities during
different sleep stages. As reported by medical views [2],
large body movements like body rollovers usually occur
when people are in light sleep, which result from the fast
heartbeat during this stage. In contrast, some tiny body
movements such as body trembling and leg jerking usually
occur in deep sleep stage. Moreover, some unconscious body
movements such as the leg stretching and the arm rising
would happen during REM, which are caused by frequent
dreams. Accordingly, we could leverage the distinguishable
movements to detect various sleep stages.

Body Movement Experiments
In order to better understand the phenomenon of body
movements during sleep, 100 groups of sleep-related body
movement experiments are conducted by 10 volunteers across
different ages when they are in bed. Every volunteer
contributes 10 groups of experiments. In each experiment,
the volunteer puts a smartphone beside his/her head and
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Figure 4. Durations of body movements

enables the accelerometer to calculate the corresponding
acceleration variance trace of the body movement. The
sample rate of accelerometer is set to be 100Hz, which is
same as the configuration of Sleep Hunter. Acceleration
variance is calculated as V (i) = a(i) − a(i − 1), where

a(i) =
√
ax(i)

2
+ ay(i)

2
+ az(i)

2 and ax(i), ay(i) and
az(i) represent the accelerometer sample value of X-axis,
Y-axis and Z-axis at time stamp i respectively. The
sleep-related body movements include body rollover, leg
stretching, arm raising, figure trembling, leg jerking and head
movement. Fig. 3 plots a real acceleration variance trace of
one volunteer’s body movements.

Body Movement Extraction
Considering the distribution of inherent accelerometer’s
noise, we denote the threshold by ξ to classify the
accelerations of body movement and noise. If |V (i)| ≥ ξ,
we regard it as an occurrence of body movement. Otherwise,
we take it as noise. However, if ξ is set too large, some
tiny body movements are likely to be ignored. Conversely,
if ξ is too small, some acceleration noises may be mistaken
as body movements. Either case would make negative
influence on the detection performance of body movement.
In order to find an effective threshold, we vary ξ from 0.01
to 1 and eventually set ξ to be 0.05, which achieves the
best detection performance based on our body movement
experiments. However, one issue of this mechanism is that
body movements such as body rollover and leg stretching
are not continuous. The temporal pauses in body movements
would cause our mechanism mistakenly to split a single body
movement into multiple movements. To solve this problem,
we realize the longest temporal pause in our body movement
experiments belongs to the body rollover, which lasts less
than 1.5s. Sleep Hunter empirically merges two successive
movements into a single one if they occur within 1.5s.

Body Movement Classification
For a better analysis of the relationship between sleep-related
body movements and sleep stages, we calculate the durations
of those large, long-lasting actions such as body rollover, leg
stretching and arm raising, and tiny, short-lasting activities
including arm trembling and leg jerking from our body
movement experiments. Fig. 4 shows the distribution of
body movement’s durations in two sets. We found that all
of the large, long-lasting body movements last at least 2.8s
while those tiny, short-lasting activities last at most 0.85s.
This obvious temporal gap helps us to distinguish these
movements into two categories. In Sleep Hunter, we define
the movements lasting less than 1s as micro body movements
and those lasting longer as macro body movements, and
leverage these two kinds of body movements as sleep-related
features.

Acoustic Event Detection (AE)
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Apart from body movements, people usually display some
acoustic events during sleep. We concentrate on five common
sleep-related acoustic events: somniloquy, tachypneic breath,
apneustic breath, snore and cough. Based on the
physiological research [2], somniloquy occurs frequently
during REM because of continual dreams. Tachypnea, which
is easily incurred by the rapid heartbeat, usually happens
during light sleep. Moreover, apneusis often appears in deep
sleep due to the slow heartbeat, and snore usually emerges in
deep or light sleep. Furthermore, cough is not likely to come
about during deep sleep, since it can easily disturb the sleep
process.

Acoustic Event Experiments
We utilize the built-in microphone, whose sample rate is set to
be 16KHz, to record acoustic data. A total of 30 participants
join our acoustic experiments and their smartphones are
placed beside their heads during sleep. According to these
recording data, we label acoustic events manually and thus
collect 180 sound clips for each type of acoustic event from
the 30 people, with each sound clip lasting around 5 seconds.
The collected data, therefore, are sufficient for us to study the
inner properties of these sleep-related acoustic events.

The acoustic analysis begins with dividing the audio stream
from the microphone into frames of equal duration. Each
frame is composed of 1024 acoustic samples, and thus its
duration is 64ms, which is able to capture the acoustic
characteristics of sounds [27].

Noise elimination
Since different kinds of noise exist in the sleep environment,
the negligible effect of noise should be eliminated firstly.
According to our observation, there are mainly three types
of noises during sleep: ambient noise, noise made by body
movement and traffic noise. Sleep Hunter leverages the
scheme in [27] to differentiate the ambient noise from other
types of noise and sleep-related acoustic events. The scheme
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Figure 6. The performance of acoustic event classification

recognizes ambient noise by its low root-mean-square (RMS)
energy and high spectral entropy [25]. If RMS of the
current frame is less than a predefined threshold Thrms and
its entropy is higher than Thentropy, it is ambient noise.
Here, we empirically set Thrms = 0.006 and Thentropy =
25, which locally optimizes the detection accuracy on our
acoustic event experiments. Moreover, body movements such
as body rollovers during sleep would make additional noise.
Since they generally induce variances of acceleration and
sound simultaneously, we preset threshold ε to measure this
simultaneity and leverage it to detect the noise made by body
movement. In other words, if the temporal deviation between
the beginnings of an acoustic event and a body movement is
less than ε, and the temporal deviation between their endings
is also less than ε, we regard the acoustic event as noise made
by body movement and then filter it out. In Sleep Hunter,
we set ε = 0.5s based on our experiments. As the acoustic
characteristics of traffic noise are complicated, we classify it
with sleep-related acoustic events together.

Acoustic Feature Selection
In this section, we extract features of sleep-related acoustic
events and traffic noise. Several most representative features
for acoustic event classification are chosen. These features
are also widely adopted by various works [27, 14, 33].

The features are divided into two categories as follows.

1) Time-domain feature:

1. Zero Crossing Rate (ZCR): 1
2

m∑
j=1

|sign(sj) −

sign(sj−1)|, where sj stands for the jth sample in a frame
who has m samples. Zero Crossing Rate [20] is an indicator
to represent the rate where the sample value changes from
positive to negative or back in time domain.

2) Frequency-domain feature :
To better extract frequency-domain features, we firstly
calculate the frequency spectrum of each frame by N -point
Fast Fourier Transform(FFT), where N equals 1024. We
then normalize the spectrum of each frame and let ft(j) be
the normalized magnitude of the jth frequency bin in the
spectrum of frame ft. We compute the following spectral
features for acoustic event classification.

1. Spectral Entropy : −
N∑
j=1

ft(j) log ft(j). Spectral

Entropy [34] has been widely used to evaluate the flatness
of the acoustic spectrum shape.

2. Spectral Centroid :
N∑
j=1

j · |ft(j)|2/
N∑
j=1

|ft(j)|2. Spectral

Centroid [25] aims to calculate the balancing point of the
power spectral distribution.
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Figure 7. Illumination intensity under different conditions

3. Spectral Flux :−
N∑
j=1

(ft(j) − ft−1(j))
2. Spectral Flux

[25] reflects the stability of acoustic events. ft(j) and ft−1(j)
stand for the jth frequency bin in the current frame and the
last frame respectively.

4. Bandwidth:
N∑
j=1

(j − Cen)2 · |ft(j)|2/
N∑
j=1

|ft(j)|2, where

Cen indicates the spectral centroid of ft. Bandwidth [25]
describes the continuous frequency range beyond zero from
lower to upper ends.

5. Spectral Rolloff: max(h|
h∑
j=1

ft(j) < threshold).

Spectral Rolloff [25] indicates the percentage frequency bin
below a predefined threshold, which is usually set to be 93%.
It reflects the skewness of the spectral distribution.

Fig. 5 illustrates the correlation matrix between the
aforementioned acoustic features and the frames of different
acoustic events collected by our experiments. Each
row/column represents a feature. The curve in the boxes
on the diagonal line stands for the distribution of the
corresponding feature. We can learn that the flux of
somniloquy lies in a relatively low level, which demonstrates
that its frequency spectrum is stable. On the contrary, the
flux of traffic is generally higher than those of others, which
is coherent with our intuition that the frequency spectrum
of traffic is abrupt. Moreover, the apneustic breath, whose
rolloff is large, possesses a high frequency. Furthermore, we
can see that most tachypneic breaths locate where entropy
and bandwidth are both low. It shows a fact that the sound
of this type of breath possesses an obvious pattern and its
frequency spectrum is narrow. Since different acoustic events
perform distinguishing distributions under various features,
we can leverage such features to classify them.

Acoustic Event Classification
As acoustic features depicted in Fig. 5 are not likely to
be classified by a simple linear function, we expect to use
a nonlinear classifier to analyze these features and make
further classification. Here, we adopt support vector machine
(SVM) [5] to express this kind of nonlinear regression. The
10-fold cross-validation [21] has been done on the collected
frames of acoustic event across the 30 participants and the
classification performance is illustrated in Fig. 6. We can
observe that the best classification performance is achieved
by traffic. Its average precision and recall reach 98.3% and
96.9% respectively. The average F1 [13] is up to 97.6%.
Even though the worst result belongs to cough, its average
precision and recall are still over 66%, and average F1 runs
up to 67.13%. Moreover, for other four types of acoustic

events (i.e., somniloquy, apneustic breath, tachypneic breath
and snore), average F1 values of them are from 70% to
88%, which demonstrates the classification performance is
acceptable. Furthermore, the standard deviations of all the
indices illustrated by the error bars are less than 6%, which
shows that the classification performance of SVM is stable
and robust. Therefore, we could filter out the traffic noise and
recognize the sleep-related acoustic events, and then leverage
them as features to predict sleep stages.

Illumination Condition Detection (IC)
Generally, sleep quality is also affected by the ambient
illumination conditions [18]. People may enjoy a good
sleep in dim environment while feel difficult to fall asleep
under strong illuminative conditions. To characterize the
relationship between sleep stages and illumination intensity
around, we categorize the illumination intensities into
different conditions, and then explore the transition of
sleep stages under these conditions. Fig. 7 illustrates the
illumination intensity under different sleep environments,
which is broadly categorized into three conditions: bedroom
without light (Weak illumination condition, ≤ 10Lux (β1));
bedroom with dim light (Moderate illumination condition,
10 ∼ 2000Lux (β2)); bedroom with strong lights (Strong
illumination condition, ≥ 2000Lux). Therefore, we
could measure the sleep environment according to the
three illumination conditions by the built-in light sensor of
smartphones. The sample rate of the light sensor is set to
be 100Hz, which is the same as the configuration of Sleep
Hunter. The three types of illumination conditions are also
leveraged as sleep-related features for sleep stage detection.

According to our survey, for most smartphones, the light
sensor is usually installed in the front face of the phone.
As a result, if the phone is facing toward the ground, the
illumination sensing module could be paralyzed because
the illumination samples cannot reflect the real illumination
conditions around the phone. Indeed, this phenomenon
occurs frequently during sleep given that some unconscious
body movements would occasionally change the position of
smartphones.

To overcome this challenge, we build a light-weight
hierarchical illumination intensity sensing scheme. Firstly,
Sleep Hunter employs the proximity sensor to detect whether
the light sensor is blocked or not. If it is not blocked,
Sleep Hunter calculates the average illumination intensity
lcur in the detection phase, and then determines the current
illumination condition by comparing lcur with the two preset
thresholds: β1,β2. On the other hand, if the light sensor is
blocked, then Sleep Hunter locates the latest record of the
illumination condition when the light sensor is not blocked,
and treats it as the current illumination condition until the
light sensor recovers.

Sleep Duration (SD) and Personal Factor (PF)
Apart from those associated physical activities and sleep
environment, the transition of sleep stage is affected by
chronological rules statistically during the sleep process.
According to the clinical study in [18], the first REM sleep
stage usually occurs about 70 to 90 minutes after we fall
asleep. A complete sleep cycle takes 90 to 110 minutes on
average. Moreover, the first sleep cycle each night contains
the relatively short REM phase and the relatively long period
of deep sleep. As time goes by, the duration of REM increases
while that of deep sleep decreases. By morning, people spend
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nearly all their sleep time in light sleep and REM. According
to this chronological property, Sleep Hunter takes its running
time as sleep duration and regards it as a sleep-related feature.
Moreover, the sleep stage is also affected by the personal
physiological status. For example, the proportion of deep
sleep stage decreases with the increase of the user’s age [26].
Since the age of sleeper is an important physiological factor
impacting sleep [29, 8], Sleep Hunter obtains the user’s age
from the registration information and further takes it with the
sleep duration as features for the sleep stage detection.

SLEEP STAGE DETECTION
In this section, we present the details of the sleep stage
detection scheme.

We propose a linear-chain conditional random field (CRF)
[22] to integrate the aforementioned features and make
further inference. CRFs are discriminative models that
predict the global probability of a sequence of random
variables. The probability structure of a CRF depends
on a log-linear combination of observable features and
dependence of hidden variables, which is depicted as a
bipartite factor graph. CRFs have been widely used in audio,
speech, language processing and health sensing [12, 24].
The rationale of CRF applied here lies twofold. Firstly, as
depicted in Fig. 1, the occurrence of sleep stages during sleep
forms a sequence. This process can be characterized by the
CRF model. Secondly, sleep-related events have dependent
relationships. For example, cough or snore often leads to
transient asphyxia, which decreases the oxygen capacities,
and in turn, results in body movements during sleep. CRFs,
compared with HMMs, are better suited for sequences that
have long interdependencies and therefore may have better
performance in our applications.

Building up the Detection Model
Fig. 8 gives the structure of CRF model we used.
The shaded nodes (Y1, ..., Yt−1, Yt) indicate the
hidden sleep stage variables during sleep. Yt ∈
{light sleep, deep sleep, REM} is an output of CRF
model, which represents the sleep stage in the detection
phase t. The unshaded node

−→
X = {X1, ..., Xt−1, Xt}

denotes the observable sleep-related features occurred in the
sleep process. Xt = {NB(t), NA(t), NI(t), ND(t), NP }
represents the feature vector at detection phase t. The
explanation of each item, which is the input of model, is
listed as follows. NB(t): the number of occurrences of
micro body movement and macro body movement during
the detection phase t. NA(t): the number of occurrences of
sleep-related acoustic events during the detection phase t.
NI(t): the illumination condition during the detection phase
t. ND(t): sleep duration. NP : age of user.

The factor ψt(Yt−1, Yt,
−→
X, t) of CRF shown as black boxes

in Fig. 8, returns a positive real valued number that represents
the compatibility of the observable feature vector

−→
X to the

OS Platform RAM CPU Battery
Galaxy S4 Android OS 4.2.2 2GB quad-core 1.638 GHz 2600mAh
Samsung Note2 Android OS 4.1 2GB quad-core 1.638 GHz 3100mAh
HTC G14 Android OS 2.3 2GB dual-core 1.228 GHz 1520mAh
MIUI 2SC Android OS 2.3 2GB quad-core 1.700 GHz 2000mAh

Table 2. Information of experimental smartphones

current hidden sleep stage Yt, and the dependence between
Yt−1 and Yt. The standard log-linear form of the factor is
listed as Equation 1,

ψt(Yt−1, Yt,
−→
X, t) = exp

(
m∑
i=1

λifi(Yt−1, Yt,
−→
X, t)

)
(1)

where λi is the parameter used to indicate the real-valued
weight of feature functions in CRF. fi is a positive real-valued
feature function used for characterizing its arguments, which
is set manually according to our training data. m is the
number of feature functions. Assuming the length of the
observation sequence is n + 1, the conditional distribution
p(
−→
Y |
−→
X ) based on the factor ψt(Yt−1, Yt,

−→
X, t) is listed as

follows,

p(
−→
Y |
−→
X ) =

1

Z−→
λ
(
−→
X )

exp

(
n∑
t=1

m∑
i=1

λifi(Yt−1, Yt,
−→
X, t)

)
(2)

where Z−→
λ
(
−→
X ) is a normalized factor defined in [22] to

normalize probability p(
−→
Y |
−→
X ) in [0,1].

Given the training data, we can estimate the weight λi
of each feature function fi by maximizing the conditional
log-likelihood of the labelled sequences [28]. For
fast training, the parameter estimation is based on the
limited-memory BFGS [36]. CRF leverages Viterbi
Algorithm [11] to predict the current hidden sleep stage Yt
according to the feature functions and their weights.

EXPERIMENTS
Sleep Hunter is implemented as a prototype system on
Android OS platform with various types of mobile phones.
The experiments are described as follows.

Experiment setups
To give a comprehensive evaluation, we install Sleep
Hunter on four different types of smartphones including:
Samsung Galaxy S4 I9508, Samsung Note 2, HTC G14,
and MIUI 2SC. All these smartphones are equipped with
necessary sensors for sleep stage detection. The hardware
configurations of these phones are detailed in Table 2. As
Sleep Hunter is independent of platforms, we envision Sleep
Hunter to be easily extended to other mobile operating
systems like WP8 and iOS.

Training Data
We collect 90 sets of nocturnal sleep data as the training data
to learn the sleep-related features by the CRF model. A total
of 45 volunteers from 10 years old to 60 years old participate
in the experiments and each of them contributes 2 sets of
nocturnal sleep data. We divide these volunteers’ ages into
5 stages by every 10 years and there are 9 participants in each
stage. During experiments, these volunteers sleep alone in a
quiet room and each of them sleeps at least 6 hours within a
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Figure 9. The results of cross validation

general period from 22:00 to 9:00 the next day. Moreover,
every participant wears Zeo and runs Sleep Hunter in his/her
smartphone simultaneously during sleep. The smartphone is
placed beside the participant’s head.

Considering that there is no absolute ground truth to detect
sleep stage and the operations of other professional medical
equipment are complicated, we leverage the result of Zeo,
which is based on EEG, as the ground truth. Though Zeo
is not a professional medical sleep monitor, its accuracy is
around 75% [35], which is comparable to the accuracy (about
80%) of those polysomnography-based research works [23,
30, 9]. Therefore, it is reasonable to regard the results of Zeo
as our ground truth to train the CRF model and measure the
detection performance of Sleep Hunter.

Actually, Zeo detects four sleep stages: wake, REM, light
sleep and deep sleep. Since both physiological properties
and physical activities of wake and REM are similar, and
the duration of wake rarely occurs in the sleep process based
on our experiments, we regard wake stage as REM in Sleep
Hunter, which makes little negative influence on the sleep
stage detection.

Fig. 9 shows the 10-fold cross-validation [21] based on the
training data. For REM and light sleep, the average precisions
and recalls lie above 60%. For deep sleep, its precision
is around 63% and its recall is about 52%. Moreover, the
standard deviations of precision and recall of each stage are
less than 5%, demonstrating the performance of CRF is stable
and robust.

Testing Data
The testing data is collected over 30 sets of nocturnal
sleep data from 15 volunteers with different genders and
careers across various age stages as those of 45 training
participants. In each age stage, we collect sleep data from 3
volunteers, with each contributing 2 sets of nocturnal sleep
data. The sleep periods are also consistent with those of
participants in the training data. To compare the detection
performance of Sleep Hunter with other actigraphy-based
products, apart from wearing Zeo and placing a smartphone
installed Sleep Hunter beside his/her head as the 45 training
participants, each volunteer is also asked to wear Jawbone
Up [16] on his/her wrist and installs Sleep As Android [37]
in the smartphone. Jawbone Up and Sleep As Android, the
two representative and widely used products for sleep stage
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Figure 10. Performance of sleep stage detection

0 25 50 75 100 125 150
0

20%

40%

60%

80%

100%

Error Time(min)

C
D

F

 

 

Rem

Light Sleep

Deep Sleep

0 25 50 75 100 125 150
0

20%

40%

60%

80%

100%

Error Time(minutes)

C
D

F

 

 

REM

Light Sleep

Deep Sleep

Figure 11. Accumulative time error

detection, run the whole sleep process with Sleep Hunter.
Since Jawbone Up is a comfortable and effortless bracelet
[17], its small size and light weight make it hard to be felt
by sleepers during sleep. Moreover, Sleep As Android is an
app running on smartphone. The sleep environments of the
15 testing participants, therefore, are similar to those of the
45 training participants.

Performance of Sleep Stage Detection
We measure the sleep stage detection performance of Sleep
Hunter based on the testing dataset. The overall detection
performance is shown in Fig. 10. The percentages in black
blocks point to the precisions and recalls of the three types of
sleep stages and the overall detection accuracy. The result of
light sleep, whose precision reaches 66.74% and recall arrives
at 68.71%, shows the outstanding detection performance.
REM also exhibits satisfying detection performance. Its
precision arrives at 63.67% and recall reaches 66.11%. The
precision and recall of the deep sleep stage seem sightly
weaker than those of the other stages. The values of these
two indices are 60.00% and 50.73% respectively. We can
explain this phenomenon by the values in the confusion
matrix in Fig. 10. The values in white and grey blocks are
the corresponding numbers of the three types of sleep stages
in our testing data. We can learn the total amount of deep
sleep is much less than REM and light sleep. It shows that
the occurrence of deep sleep stage in the entire sleep process
is much less than those of the other two sleep stages. Since
the deep sleep happens rarely, it is harder for the classifier
to learn a competitive result of this sleep stage than those of
others. The values in grey blocks, however, still demonstrate
that most sleep stages are detected accurately. The detection
accuracy of system runs up to 64.55%, showing the overall
detection performance of Sleep Hunter is satisfying.

Moreover, we also evaluate the accumulative time error of
each sleep stage detected by Sleep Hunter over a whole
sleep process. Fig. 11 summarizes this kind of time error
accumulated over the entire 6-9 hours of sleep based on our
testing dataset. We can learn that 80% accumulative time
errors of deep sleep stages stay under 45 minutes. The median
error of this sleep stage is only around 25 minutes. Similarly,
we also see that 80% accumulative time errors of REM are
under 60 minutes and its median accumulative time error
reaches about 30 minutes. The upper bound of the 80%
accumulative time errors of light sleep arrives at around 75
minutes, which is the longest time in the three sleep stages. Its
median error is around 50 minutes. Even though the precision
and recall of deep sleep are little weaker than those of the
others, its accumulative time error is the lowest in the sleep
stages. It can also be explained that there are less occurrences
of deep sleep than those of light sleep and REM during sleep.
In Fig. 11, most accumulative time errors of the three sleep
stages are shorter than one hour. Since the sleep duration lasts
for 6 hours to 9 hours in the testing experiments, the fact of

7



23:30 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30

Ground truth

Sleep Hunter

Error

Right ZoneWake REM Light Deep Wrong Zone

Zeo

Figure 12. Sleep stage tracking of one user during a night

REM Light Sleep Deep Sleep
Features Precision Recall Precision Recall Precision Recall
BM 39.62% 34.91% 37.84% 47.11% 30.12% 28.27%
BM+AE 45.41% 39.67% 47.83% 49.31% 38.34% 33.27%
BM+AE+IC 46.13% 41.81% 49.10% 52.27% 42.91% 35.84%
BM+AE+IC+SD 60.89% 67.99% 63.36% 59.15% 57.96% 46.53%
BM+AE+IC+SD+PF 63.67% 68.71% 66.74% 66.11% 60.00% 50.73%

Table 3. Evaluation of sleep-related features

less than one hour accumulative time error demonstrates that
the detection performance of Sleep Hunter is outstanding.

Fig. 12 shows a user sleep tracking instance in our testing
dataset. We carefully compared the detection results of Sleep
Hunter with those of Zeo, which we regard as the ground
truth. The sleep stage detection errors are labelled as the
wrong zone in the last boxed line. The right zone indicates
the right detection of Sleep Hunter. Since we regard wake
stage as REM in Sleep Hunter, the wake stages detected by
Zeo are labelled as REM in the ground truth.

In Fig. 12, we can observe that the detection errors occur
frequently in the following two cases: one is during the
transition of two different sleep stages, while the other is
in the sleep stages with a short lifespan (i.e., less than 10
minutes). In the former case, as physical activities of sleepers
do not occur immediately when a new sleep stage begins,
Sleep Hunter may fail to realize the sleep transitions and
make error predictions accordingly. For the sleep stages
whose durations are short, physical features may not be
displayed obviously, which cannot be sensed by Sleep Hunter
and thus induces mistakes. Actually, this phenomenon is also
consistent with the results of the testing experiments over 30
sets of nocturnal sleep data, which could be seen as the main
sources of error in Sleep Hunter.

From Fig. 12, we can see that although Sleep Hunter makes
misjudgement occasionally, it still obtains 57 right zones
accounting for 285 minutes, which occupies nearly 70%
lifespan of the sleep process.

Evaluation on Features
Table 3 exhibits the trend of detection performance by
adding each feature incrementally. The contributions of
features for classification are reliant on the design of
feature functions in CRF, which predict hidden variables by
incorporating observable features together. Apparently, with
the increasing number of features, the detection performance
of the CRF model improves, demonstrating the rationality
of our configurations of the feature functions and selected
features.

Sleep Hunter
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Sleep As Android

Precision
          50.73%       66.11%       66.74%        60.00%
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Accuracy
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Recall

Deep Sleep
Precision Recall
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    29.03%
    49.61%

Device
Stage

Figure 13. Performance comparison

Performance Comparison
To our best knowledge, there is no obvious baseline for
the sleep stage detection performance in actigraphy-based
work, and thus we compare the detection performance of
Sleep Hunter with Jawbone Up and Sleep As Android, two
representative actigraphy-based products monitoring sleep
stage and having been widely used in the market. Since these
two devices only detect the light sleep stage and the deep
sleep stage, we compare these two with those of Zeo.

The average values of precision and recall of these products
are calculated based on our testing dataset, which are shown
in Fig. 13. Even though Sleep Hunter detects one more
sleep stage than the other devices, its detection ability is
still much better than the other two products, which clearly
demonstrates that Sleep Hunter is superior to the existing
actigraphy-based detection systems of sleep stage.

System Overhead

System Delay and CPU Share
In this section, we leverage four types of experimental
smartphones to measure the system delay and the CPU
share of Sleep Hunter. Since Sleep Hunter predicts the
sleep stage every 5 minutes, it makes classification by the
data recorded from each submodule in the last 5 minutes
while it is running. Accordingly, the system delay is
determined by the time cost to deal with the data in the
last 5 minutes. As the personal factor submodule collects
information from the user’s registration, we mainly analyze
the time consumptions of other four submodules and the
whole system. Table 4 illustrates the average delay of
the corresponding submodules. The system delays for the
smartphones range from 79s to 82.93s. Specifically, the
acoustic event detection module occupies the major part of
time consumption. Such cost is caused by parsing acoustic
primitive data and computing its frequency spectrum. Given
these submodules in the first layer run in parallel, the system
delay of Sleep Hunter equals the largest time consumption
of submodules in the first layer plus the time cost of the
CRF model in the second layer. Since the sleep stage hardly
changes in a short time (i.e., less than 2 minutes) and the
smart call service could be provided as long as it lies in
the wake-up period that lasts one hour in Sleep Hunter, the
system delay around 80s makes little negative influence on
the performance of our system.

Phones Body Movement Acoustic Events Light Duration CRF Total CPU Share
Galaxy S4 12.72s 77.75s 1.61s 0.69s 1.55s 79.00s 6%
Note2 12.21s 77.87s 1.87s 0.58s 1.63s 80.50s 5%
HTC G14 14.78s 80.12s 2.37s 1.02s 2.81s 82.93s 9%
MIUI 2SC 12.31s 78.19s 1.58s 0.59s 2.74s 80.90s 8%

Table 4. CPU share and processing time
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Furthermore, we can observe that the CPU shares of Sleep
Hunter with 4 types of smartphones in Table 4. The CPU
share for G14 is little larger than those of other three
smartphones, which may be caused by the different properties
of CPU. Despite such a difference, the CPU share of Sleep
Hunter stays stable from 5% to 9%, indicating that Sleep
Hunter occupies negligible CPU resource for daily use.

Case study
Sleep Quality Report
Since sleep quality is determined by the percentage of
different sleep stages during the whole sleep process, we can
measure a user’s sleep quality by Sleep Hunter. We design
a sleep quality measuring method based on the evaluation
approach ‘ZQ’ of Zeo [42]. ‘SQ’ is a score shown in Eq. 3
for measuring the sleep quality of users in Sleep Hunter.
Its structure and parameters are designed according to ‘ZQ’,
where REM , Deep and Light represent their durations
(minutes) in a sleep process. The range of ‘SQ’ is from 50
to 100.

SQ =

⌈
(REM × 0.5 + Light× 0.75 +Deep)× 100

REM + Light+Deep

⌉
(3)

The right figure in Fig. 14 illustrates the average ‘SQ’ and
‘ZQ’ of 2 sets of nocturnal sleep data for the 15 users in
the testing dataset. Though differences exist in the structures
of ‘SQ’ and ‘ZQ’, the general variance trends of these two
indices are correlated with the growth of age.

We analyze the sleep quality by ‘SQ’ in the following parts.

We observed that the occurrence of deep sleep is usually
affected by its starting time and duration. According to our
observation of the testing dataset, we figure out that if the
deep sleep stage occurs in the first hour after the user falls
asleep and lasts more than 10 minutes, the possibility of its
recurrence is high and the sleep quality is usually appealing.
Otherwise, the percentage of deep sleep would be low and
the sleep quality is disappointing. The left figure in Fig. 14
shows the distribution of sleep stages in the two different
conditions based on our testing dataset. Condition 1 stands
for the distribution of sleep stages in a sleep process when
the deep sleep stage occurs in the first hour and lasts for
more than 10 minutes. Condition 2 represents the opposite
case. Clearly, the percentage of deep sleep in Condition 1 is
significantly larger than that in Condition 2. Based on Eq. 3,
‘SQ’ in Condition 2 is usually lower than that in Condition1.
It reflects the fact that if a user cannot fall into deep sleep
within one hour or remains in this stage in a short time, the
user’s sleep quality will be low. Based on our knowledge of
medical research [4], if the brain waves of a person remain
rapid for a long time, it is hard for him/her to transform
the fast brain waves to slow brain waves. It is because fast

brain waves often make individuals excited, the long period
excitement would disturb their normal rest habits.

As a point of interest, we also make an analysis on the
relationship between age and sleep quality. From the right
figure in Fig. 14, we observe that ‘SQ’ decreases with the
increase of the age generally. More specifically, we find two
rapid drops in Fig. 14. The first sudden drop occurs at the
age of around 30. ‘SQ’ falls from the score around 75 to
the score about 65. According to our observation, we think
the 10-point drop stems from users’ work and family stress.
At this age stage, most individuals have their own families
to take care of and carry more workload than they used to
do in school. High pressure, therefore, leads to the poor sleep
quality. The second sudden drop occurs at the age of 40. ‘SQ’
slips from the score above 65 to the score near 55. It is likely
that many users are approaching menopause during this age
stage, when their physiological functions are experiencing
changes. Some climacteric syndromes cause adverse impacts
on the users and then decrease their sleep qualities. Given
that the gender and career of the 15 participants in the testing
dataset are different, our sleep quality report, therefore, is
convincing and representative to some extent. We note that all
conclusions are speculative based on our small sample size,
but our observations are consistent with other sleep research
studies [6, 31, 10].

According to the observations above, we could make two
recommendations for users. 1) Since the beginning of sleep
highly impacts the quality of the whole sleep process, people
may benefit from light activities for relaxation before going
to bed. For example, listening to some soft music, making
several deep breaths or taking a warm bath can greatly help
people relax before sleep. 2) People in their 30s are largely
threatened by the pressure from work. Individuals at this
age may benefit from some adjustments to achieve a greater
balance between work and life. Seeking advice from more
experienced people and cultivating a positive attitude may
help them release some pressure off. For those at their 40s,
health deals, moderate but habitual exercise could help them
improve sleep quality.

Smart Call
Sleep Hunter can also provide smart wake-up services based
upon the sleep stage detection, since individuals feel much
more refreshed when they are woken up in light sleep [4].
Users are allowed to set a one-hour period when they want to
be woken, and then Sleep Hunter wakes the user up when it
detects the current sleep stage is light sleep during the preset
period. If Sleep Hunter detects no light sleep for the duration,
it wakes users up at the end of this period. Fig. 15 depicts an
illustration of a real smart call case in our testing experiments.
The user sets the wake-up period from 6:30 a.m. to 7:30 a.m.,
and then Sleep Hunter will automatically wake the user up
based on the detection result of sleep stages in the period.
When Sleep Hunter detects that the user stays in a light sleep
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Case Explanation Sleep Hunter Sleep As Android
Case 1 There are actual some light sleep stages in the preset wake-up period and the app detects these light sleep

stages rightly.
86.67% 42.33%

Case 2 There are actual some light sleep stages in the preset wake-up period but the app does not detect these
light sleep stages in the right time or does not find any light sleep stages at all.

6.67% 36.33%

Case 3 There are no light sleep stage in the preset wake-up period actually but the app mistakes some other sleep
stages as light sleep.

6.67% 21.33%

Case 4 There are no light sleep stage in the preset wake-up period actually and the app also does not find them. 0% 0%

Table 5. Performance of smart call service

at 7:25 a.m., Sleep Hunter sings a soft song to wake him/her
up.

We evaluate the smart call performance of Sleep Hunter and
Sleep As Android by the users in our testing experiments.
Each user is asked to select a wake-up period before going
to bed. Table 5 gives the occurrence rates of these two
apps under four different cases. Compared with Sleep As
Android, the larger occurrence rate in Case 1 and smaller
occurrence rates in Case 2 and Case 3 show that the smart
call service of Sleep Hunter performs much better. Moreover,
86.67% occurrence rate of Case 1 demonstrates that Sleep
Hunter is able to provide the smart call service accurately.
There are mainly two reasons behind this. The first one is
the remarkable sleep stage detection performance of Sleep
Hunter. The second one is that more light sleep stages and
REM occur and less deep sleep stages happen during the
latter period of sleep. Since Sleep Hunter has shown excellent
detection performances of light sleep and REM, smart call
service, therefore, exhibits outstanding.

DISCUSSION
The sleep stage detection accuracy of Sleep Hunter is
64.55%, which seems hardly comparable to those of
polysomnography-based devices. Therefore, Sleep Hunter
cannot take place of those professional medical devices for
the high-accurate sleep detection. However, Sleep Hunter, as
an app, pays more attention to providing a pervasive and less
intrusive sleep service using commodity smartphones. By
Sleep Hunter, users can be informed of their general sleep
condition conveniently and be woken up properly.

RELATED WORK
The state-of-the-art research areas related to our work can be
divided into the following two categories.

Polysomnography-based work
Polysomnography-based research works detect sleep quality
by some certain biomedical signals. For example,
most medical research works on sleep quality leverage
electroencephalograph (EEG) to monitor brain waves and
then recognize sleep stages. In [23, 30, 9], authors extract
the electroencephalograph features from polysomnography
(PSG) and leverage unsupervised learning approaches to
predict sleep stages.

Moreover, some sleep quality monitors are assisted by
additional devices. Zeo [41], which is a product based on
EEG, leverages a brain wave sensor built in a headband to
monitor sleeper’s electroencephalograph, and then the EEG
recordings are sent to the user’s smartphone via Bluetooth.
Zhang et al. [43] design a real-time system to monitor the
user’s sleep condition. It ameliorates users’ sleep qualities
by exploiting a pulse oximeter to detect the pulse oxygen
saturation (SPO2) of the human body during their sleep
processes.

Compared with such works, Sleep Hunter concentrates on
physical activities rather than biomedical signals. Moreover,
it does not need special additional devices for detection.

Actigraphy-based work
Actigraphy-based research works leverage physical activities
to predict sleep quality. iSleep [14] measures the sleep quality
by recording some certain sleep-related acoustic events and
evaluates it by the Pittsburgh Sleep Quality Index (PSQI)
[7]. Bai et al. [3] predict the sleep quality by observing
users’ daily activities with smartphones. In [19], the authors
leverage pervasive sensors to record the sleep disruptors for
users. The authors in [15] monitor sleep by the RFID sensors
installed with accelerometers.

Many products such as Sleep As Android [37] and Jawbone
Up [16] predict sleep stages and measure sleep quality based
on physical activities including body movement and snore
simply. For example, when many body movements or
acoustic events happen in a period, they regard the user stays
in light sleep. On the contrary, the user is assumed to step
into deep sleep as long as little body movement and ambient
noise occur in the period.

Different from these works, Sleep Hunter evaluates the user’s
sleep quality by measuring the durations of different sleep
stages in a sleep process rather than recording some certain
sleep-related activities. It incorporates sleep-relative events
from different perspectives and leverages a statistical model
to predict the sleep stage, which provides a fine-grained
detection performance of sleep stages without any assistant
devices.

CONCLUSION
Recent advances in sensor technology and machine learning
technique empower machine to intelligently understand
human behaviors. This paper guides this opportunity into an
application that automatically detects sleep stage transitions
of sleepers for sleep quality monitoring. The core idea is
to leverage built-in sensors on commodity phones to sense
sleep-related events, and further predict the dwelling time
of each sleep stage by a statistical model based on these
observable events. We implement Sleep Hunter on Android
platform and test it with data collected over 30 sets of
nocturnal sleep data. The results show that our system
achieves desirable detection accuracy.
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